

Welcome to Dyndnsc’s documentation!

User Guide

This part of the documentation, which is mostly prose, begins with some
background information about Dyndnsc, then focuses on step-by-step
instructions for getting the most out of Dyndnsc.

	Introduction
	What is Dyndnsc?

	Goals

	Installation
	Pip / pipsi

	Docker

	Get the Code

	Quickstart
	Command line usage

	Update protocols

	Detecting the IP

	Presets

	Configuration file

	Custom services

	Plugins

	Frequently Asked Questions
	Python 3 Support?

	Is service xyz supported?

	I get a wrong IPv6 address, why?

	What about error handling of network issues?

	Community Updates
	Tracking development

	Release history

	License

API Documentation

If you are looking for information on a specific function, class or method,
this part of the documentation is for you.

	API Documentation
	Main Interface

	IP Updaters

	IP Detectors

Contributor Guide

If you want to contribute to the project, this part of the documentation is for
you.

	Contributing
	Basic method to contribute a change

	Idioms to keep in mind

Indices and tables

	Index

	Module Index

	Search Page

Introduction

What is Dyndnsc?

It’s a dynamic DNS client [https://en.wikipedia.org/wiki/Dynamic_DNS].
It can detect your IP address in a variety of ways and update DNS records
automatically.

Goals

Provide:

	an easy to use command line tool

	an API for developers

	support for a variety of ways to detect IP addresses

	support for a variety of ways to update DNS records

Installation

This part of the documentation covers the installation of Dyndnsc.
The first step to using any software package is getting it properly installed.

Pip / pipsi

Installing Dyndnsc is simple with pip [http://www.pip-installer.org/]:

pip install dyndnsc

Or, if you prefer a more encapsulated way, use pipsi [https://github.com/mitsuhiko/pipsi/]:

pipsi install dyndnsc

Docker

Docker [https://www.docker.com] images are provided for the following architectures.

x86:

docker pull infothrill/dyndnsc-x86-alpine

See also https://hub.docker.com/r/infothrill/dyndnsc-x86-alpine/

armhf:

docker pull infothrill/dyndnsc-armhf-alpine

See also https://hub.docker.com/r/infothrill/dyndnsc-armhf-alpine/

Get the Code

Dyndnsc is developed on GitHub, where the code is
available [https://github.com/infothrill/python-dyndnsc].

You can clone the public repository:

git clone https://github.com/infothrill/python-dyndnsc.git

Once you have a copy of the source, you can embed it in your Python package,
or install it into your site-packages easily:

python setup.py install

Quickstart

Eager to get started? This page gives a good introduction in how to get started
with Dyndnsc. This assumes you already have Dyndnsc installed. If you do not,
head over to the Installation section.

First, make sure that:

	Dyndnsc is installed

	Dyndnsc is up-to-date

Let’s get started with some simple examples.

Command line usage

Dyndnsc exposes all options through the command line interface, however,
we do recommend using a configuration file.
Here is an example to update an IPv4 record on nsupdate.info with web
based IP autodetection:

$ dyndnsc --updater-dyndns2 \
 --updater-dyndns2-hostname test.nsupdate.info \
 --updater-dyndns2-userid test.nsupdate.info \
 --updater-dyndns2-password XXXXXXXX \
 --updater-dyndns2-url https://nsupdate.info/nic/update \
 --detector-webcheck4 \
 --detector-webcheck4-url https://ipv4.nsupdate.info/myip \
 --detector-webcheck4-parser plain

Updating an IPv6 address when using Miredo [http://www.remlab.net/miredo/]:

$ dyndnsc --updater-dyndns2 \
 --updater-dyndns2-hostname test.nsupdate.info \
 --updater-dyndns2-userid test.nsupdate.info \
 --updater-dyndns2-password XXXXXXXX \
 --detector-teredo

Updating an IPv6 record on nsupdate.info with interface based IP detection:

$ dyndnsc --updater-dyndns2 \
 --updater-dyndns2-hostname test.nsupdate.info \
 --updater-dyndns2-userid test.nsupdate.info \
 --updater-dyndns2-password XXXXXXXX \
 --detector-socket \
 --detector-socket-family INET6

Update protocols

Dyndnsc supports several different methods for updating dynamic DNS services:

	
	dnsimple [https://developer.dnsimple.com/]
	Note: requires python package dnsimple-dyndns [https://pypi.python.org/pypi/dnsimple-dyndns] to be installed

	duckdns [https://www.duckdns.org/]

	dyndns2 [https://help.dyn.com/remote-access-api/]

	freedns.afraid.org [https://freedns.afraid.org/]

A lot of services on the internet offer some form of compatibility, so check
against this list. Some of these external services are pre-configured for
Dyndnsc as a preset, see the section on presets.

Each supported update protocol can be parametrized on the dyndnsc command line
using long options starting with ‘–updater-’ followed by the name of the
protocol:

$ dyndnsc --updater-afraid
$ dyndnsc --updater-dnsimple
$ dyndnsc --updater-duckdns
$ dyndnsc --updater-dyndns2

Each of these update protocols supports specific parameters, which might differ
from each other. Each of these additional parameters can specified on the
command line by appending them to the long option described above.

Example to specify token for updater duckdns:

$ dyndnsc --updater-duckdns-token 847c0ffb-39bd-326f-b971-bfb3d4e36d7b

Detecting the IP

Dyndnsc ships a couple of “detectors” which are capable of finding an IP
address through different means.

Detectors may need additional parameters to work properly. Additional parameters
can be specified on the command line similarly to the update protocols.

$ dyndnsc --detector-iface \
 --detector-iface-iface en0 \
 --detector-iface-family INET

$ dyndnsc --detector-webcheck4 \
 --detector-webcheck4-url http://ipv4.nsupdate.info/myip \
 --detector-webcheck4-parser plain

Some detectors require additional python dependencies:

	iface, teredo detectors require netifaces [https://pypi.python.org/pypi/netifaces] to be installed

Presets

Dyndnsc comes with a list of pre-configured presets. To see all configured
presets, you can run

$ dyndnsc --list-presets

Presets are used to shorten the amount of configuration needed by providing
preconfigured parameters. For convenience, Dyndnsc ships some built-in presets
but this list can be extended by yourself by adding them to the configuration
file. Each preset has a section in the ini file called ‘[preset:NAME]’.
See the section on the configuration file to see how to use presets.

Note: Presets can currently only be used in a configuration file. There is
currently no support to select a preset from the command line.

Configuration file

Create a config file test.cfg with this content (no spaces at the left!):

[dyndnsc]
configs = test_ipv4, test_ipv6

[test_ipv4]
use_preset = nsupdate.info:ipv4
updater-hostname = test.nsupdate.info
updater-userid = test.nsupdate.info
updater-password = xxxxxxxx

[test_ipv6]
use_preset = nsupdate.info:ipv6
updater-hostname = test.nsupdate.info
updater-userid = test.nsupdate.info
updater-password = xxxxxxxx

Now invoke dyndnsc and give this file as configuration:

$ dyndnsc --config test.cfg

Custom services

If you are using a dyndns2 compatible service and need to specify the update
URL explicitly, you can add the argument –updater-dyndns2-url:

$ dyndnsc --updater-dyndns2 \
 --updater-dyndns2-hostname=test.dyndns.com \
 --updater-dyndns2-userid=bob \
 --updater-dyndns2-password=fub4r \
 --updater-dyndns2-url=https://dyndns.example.com/nic/update

Plugins

Dyndnsc supports plugins which can be notified when a dynamic DNS entry was
changed. Currently, only two plugins exist:

	dyndnsc-growl [https://pypi.python.org/pypi/dyndnsc-growl]

	dyndnsc-macosnotify [https://pypi.python.org/pypi/dyndnsc-macosnotify]

The list of plugins that are installed and available in your environment will
be listed in the command line help. Each plugin command line option starts with
‘–with-‘.

Frequently Asked Questions

Python 3 Support?

Yes! In fact, we only support Python3 at this point.

Here’s a list of Python platforms that are officially
supported:

	Python 3.6

	Python 3.7

	Python 3.8

	Python 3.9

Is service xyz supported?

To find out wether a certain dynamic dns service is supported by Dyndnsc, you
can either try to identify the protocol involved and see if it is supported by
Dyndnsc by looking the output of ‘dyndnsc –help’. Or maybe the service in
question is already listed in the presets (‘dyndnsc –list-presets’).

I get a wrong IPv6 address, why?

If you use the “webcheck6” detector and your system has IPv6 privacy extensions,
it’ll result in the temporary IPv6 address that you use to connect to the
outside world.

You likely rather want your less private, but static global IPv6 address in
DNS and you can determine it using the “socket” detector.

What about error handling of network issues?

“Hard” errors on the transport level (tcp timeouts, socket erors…) are
not handled and will fail the client. In daemon or loop mode, exceptions are
caught to keep the client alive (and retries will be issued at a later time).

Community Updates

Tracking development

The best way to track the development of Dyndnsc is through
the GitHub repo [https://github.com/infothrill/python-dyndnsc].

Release history

0.6.x (unreleased)

0.6.1 (April 2nd 2021)

	improved: dnswanip error reporting now includes dns information

	improved: fix for bug #144 [https://github.com/infothrill/python-dyndnsc/issues/144]

	improved: added tests for console script

0.6.0 (February 21st 2021)

	changed (INCOMPATIBLE): dropped support for python 2.7 and python 3.4, 3.5

	added: more presets

	improved: add support for python 3.8, 3.9

	added: docker build automation

	added: –log-json command line option, useful when running in docker

0.5.1 (July 7th 2019)

	improved: pin pytest version to version smaller than 5.0.0 [https://docs.pytest.org/en/latest/py27-py34-deprecation.html]

0.5.0 (June 25th 2019)

	improved: simplified notification plugin and externalized them using entry_points

	added: WAN IP detection through DNS (detector ‘dnswanip’)

	improved: replaced built-in daemon code with daemonocle [https://pypi.python.org/pypi/daemonocle]

	switched to pytest [https://pytest.org] for running tests

	changed (INCOMPATIBLE): dropped support for python 2.6 and python 3.3

	added: new command line option -v to control verbosity

	improved: infinite loop and daemon stability, diagnostics #57

	improved: updated list of external urls for IP discovery

	improved: install documentation updated

	improved: add many missing docstrings and fixed many code smells

	improved: run flake8 [http://flake8.pycqa.org/] code quality checks in CI

	improved: run check-manifest [https://pypi.python.org/pypi/check-manifest] in CI

	improved: run safety [https://pypi.python.org/pypi/safety] in CI

0.4.4 (December 27th 2017)

	fixed: fixed wheel dependency on python 2.6 and 3.3

	fixed: pep8 related changes, doc fixes

0.4.3 (June 26th 2017)

	fixed: nsupdate URLs

	fixed: several minor cosmetic issues, mostly testing related

0.4.2 (March 8th 2015)

	added: support for https://www.duckdns.org

	fixed: user configuration keys now override built-in presets

0.4.1 (February 16th 2015)

	bugfixes

0.4.0 (February 15th 2015)

	changed (INCOMPATIBLE): command line arguments have been drastically adapted
to fit different update protocols and detectors

	added: config file support

	added: running against multiple update services in one go using config file

	improved: for python < 3.2, install more dependencies to get SNI support

	improved: the DNS resolution automatically resolves using the same address
family (ipv4/A or ipv6/AAAA or any) as the detector configured

	improved: it is now possible to specify arbitrary service URLs for the
different updater protocols.

	fixed: naming conventions

	fixed: http connection robustness (i.e. catch more errors and handle them as
being transient)

	changed: dependency on netifaces was removed, but if installed, the
functionality remains in place

	a bunch of pep8, docstring and documntation updates

0.3.4 (January 3rd 2014)

	added: initial support for dnsimple.com through
dnsimple-dyndns [https://pypi.python.org/pypi/dnsimple-dyndns]

	added: plugin based desktop notification (growl and OS X notification center)

	changed: for python3.3+, use stdlib ‘ipaddress’ instead of ‘IPy’

	improved: dyndns2 update is now allowed to timeout

	improved: freedns.afraid.org robustness

	improved: webcheck now has an http timeout

	improved: naming conventions in code

	added: initial documentation using sphinx

0.3.3 (December 2nd 2013)

	added: experimental support for http://freedns.afraid.org

	added: detecting ipv6 addresses using ‘webcheck6’ or ‘webcheck46’

	fixed: long outstanding state bugs in detector base class

	improved: input validation in Iface detection

	improved: support pytest conventions

0.3.2 (November 16th 2013)

	added: command line option –debug to explicitly increase loglevel

	fixed potential race issues in detector base class

	fixed: several typos, test structure, naming conventions, default loglevel

	changed: dynamic importing of detector code

0.3.1 (November 2013)

	added: support for https://nsupdate.info

	fixed: automatic installation of ‘requests’ with setuptools dependencies

	added: more URL sources for ‘webcheck’ IP detection

	improved: switched optparse to argparse for future-proofing

	fixed: logging initialization warnings

	improved: ship tests with source tarball

	improved: use reStructuredText rather than markdown

0.3 (October 2013)

	moved project to https://github.com/infothrill/python-dyndnsc

	added continuous integration tests using http://travis-ci.org

	added unittests

	dyndnsc is now a package rather than a single file module

	added more generic observer/subject pattern that can be used for
desktop notifications

	removed growl notification

	switched all http related code to the “requests” library

	added http://www.noip.com

	removed dyndns.majimoto.net

	dropped support for python <= 2.5 and added support for python 3.2+

0.2.1 (February 2013)

	moved code to git

	minimal PEP8 changes and code restructuring

	provide a makefile to get dependencies using buildout

0.2.0 (February 2010)

	updated IANA reserved IP address space

	Added new IP Detector: running an external command

	Minimal syntax changes based on the 2to3 tool, but remaining compatible
with python 2.x

0.1.2 (July 2009)

	Added a couple of documentation files to the source distribution

0.1.1 (September 2008)

	Focus: initial public release

License

Dyndnsc is released under terms of MIT License [http://www.opensource.org/licenses/MIT]. This license was chosen
explicitly to allow inclusion of this software in proprietary and closed systems.

Copyright (c) 2008-2015 Paul Kremer

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

API Documentation

This part of the documentation should cover all the relevant interfaces of dyndnsc.

Main Interface

	
class dyndnsc.DynDnsClient(updater=None, detector=None, plugins=None, detect_interval=300)

	This class represents a client to the dynamic dns service.

Initialize.

	Parameters

	detect_interval – amount of time in seconds that can elapse between checks

	
check()

	Check if the detector changed and call sync() accordingly.

If the sleep time has elapsed, this method will see if the attached
detector has had a state change and call sync() accordingly.

	
has_state_changed()

	Detect changes in offline detector and real DNS value.

Detect a change either in the offline detector or a
difference between the real DNS value and what the online
detector last got.
This is efficient, since it only generates minimal dns traffic
for online detectors and no traffic at all for offline detectors.

	Return type

	boolean

	
needs_check()

	Check if enough time has elapsed to perform a check().

If this time has elapsed, a state change check through
has_state_changed() should be performed and eventually a sync().

	Return type

	boolean

	
needs_sync()

	Check if enough time has elapsed to perform a sync().

A call to sync() should be performed every now and then, no matter what
has_state_changed() says. This is really just a safety thing to enforce
consistency in case the state gets messed up.

	Return type

	boolean

	
sync()

	Synchronize the registered IP with the detected IP (if needed).

This can be expensive, mostly depending on the detector, but also
because updating the dynamic ip in itself is costly. Therefore, this
method should usually only be called on startup or when the state changes.

IP Updaters

Afraid

Functionality for interacting with a service compatible with https://freedns.afraid.org/.

Duckdns

Module containing the logic for updating DNS records using the duckdns protocol.

From the duckdns.org website:

https://{DOMAIN}/update?domains={DOMAINLIST}&token={TOKEN}&ip={IP}

	where:
	DOMAIN the service domain
DOMAINLIST is either a single domain or a comma separated list of domains
TOKEN is the API token for authentication/authorization
IP is either the IP or blank for auto-detection

Dyndns2

Module providing functionality to interact with dyndns2 compatible services.

IP Detectors

Command

Module containing logic for command based detectors.

	
class dyndnsc.detector.command.IPDetector_Command(command='', *args, **kwargs)

	IPDetector to detect IP address executing shell command/script.

Initialize.

	Parameters

	command – string shell command that writes IP address to STDOUT

	
__init__(command='', *args, **kwargs)

	Initialize.

	Parameters

	command – string shell command that writes IP address to STDOUT

DNS WAN IP

Module containing logic for DNS WAN IP detection.

See also https://www.cyberciti.biz/faq/how-to-find-my-public-ip-address-from-command-line-on-a-linux/

	
class dyndnsc.detector.dnswanip.IPDetector_DnsWanIp(family=None, *args, **kwargs)

	Detect the internet visible IP address using publicly available DNS infrastructure.

Initialize.

	Parameters

	family – IP address family (default: ‘’ (ANY), also possible: ‘INET’, ‘INET6’)

	
__init__(family=None, *args, **kwargs)

	Initialize.

	Parameters

	family – IP address family (default: ‘’ (ANY), also possible: ‘INET’, ‘INET6’)

Interface

Module providing IP detection functionality based on netifaces.

	
class dyndnsc.detector.iface.IPDetector_Iface(iface=None, netmask=None, family=None, *args, **kwargs)

	IPDetector to detect an IP address assigned to a local interface.

This is roughly equivalent to using ifconfig or ipconfig.

Initialize.

	Parameters

	
	iface – name of interface

	family – IP address family (default: INET, possible: INET6)

	netmask – netmask to be matched if multiple IPs on interface
(default: none (match all)”, example for teredo:
“2001:0000::/32”)

	
__init__(iface=None, netmask=None, family=None, *args, **kwargs)

	Initialize.

	Parameters

	
	iface – name of interface

	family – IP address family (default: INET, possible: INET6)

	netmask – netmask to be matched if multiple IPs on interface
(default: none (match all)”, example for teredo:
“2001:0000::/32”)

Socket

Module containing logic for socket based detectors.

	
class dyndnsc.detector.socket_ip.IPDetector_Socket(family=None, *args, **kwargs)

	Detect IPs used by the system to communicate with outside world.

Initialize.

	Parameters

	family – IP address family (default: INET, possible: INET6)

	
__init__(family=None, *args, **kwargs)

	Initialize.

	Parameters

	family – IP address family (default: INET, possible: INET6)

Teredo

Module containing logic for teredo based detectors.

	
class dyndnsc.detector.teredo.IPDetector_Teredo(iface='tun0', netmask='2001:0000::/32', *args, **kwargs)

	IPDetector to detect a Teredo ipv6 address of a local interface.

Bits 0 to 31 of the ipv6 address are set to the Teredo prefix (normally
2001:0000::/32).
This detector only checks the first 16 bits!
See http://en.wikipedia.org/wiki/Teredo_tunneling for more information on
Teredo.

Inherits IPDetector_Iface and sets default options only.

Initialize.

	
__init__(iface='tun0', netmask='2001:0000::/32', *args, **kwargs)

	Initialize.

Web check

Module containing logic for webcheck based detectors.

	
class dyndnsc.detector.webcheck.IPDetectorWebCheck(*args, **kwargs)

	Class to detect an IPv4 address as seen by an online web site.

Return parsable output containing the IP address.

Note

This detection mechanism requires ipv4 connectivity, otherwise it
will simply not detect the IP address.

Initialize.

	
__init__(*args, **kwargs)

	Initialize.

Contributing

Basic method to contribute a change

Dyndnsc is under active development, and contributions are more than welcome!

	Check for open issues or open a fresh issue to start a discussion around a bug
on the issue tracker [https://github.com/infothrill/python-dyndnsc/issues].

	Fork the repository [https://github.com/infothrill/python-dyndnsc] and start making your
changes to a new branch.

	Write a test which shows that the bug was fixed.

	Send a pull request and bug the maintainer until it gets merged and published. :)
Make sure to add yourself to AUTHORS [https://github.com/infothrill/python-dyndnsc/blob/master/AUTHORS].

Idioms to keep in mind

	keep amount of external dependencies low, i.e. if it can be done using the
standard library, do it using the standard library

	do not prefer specific operating systems, i.e. even if we love Linux, we
shall not make other suffer from our personal choice

	write unittests

Also, keep these PEP 20 [https://www.python.org/dev/peps/pep-0020] idioms in mind:

	Beautiful is better than ugly.

	Explicit is better than implicit.

	Simple is better than complex.

	Complex is better than complicated.

	Readability counts.

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 dyndnsc	

 	
 	
 dyndnsc.detector.command	

 	
 	
 dyndnsc.detector.dnswanip	

 	
 	
 dyndnsc.detector.iface	

 	
 	
 dyndnsc.detector.socket_ip	

 	
 	
 dyndnsc.detector.teredo	

 	
 	
 dyndnsc.detector.webcheck	

 	
 	
 dyndnsc.updater.afraid	

 	
 	
 dyndnsc.updater.duckdns	

 	
 	
 dyndnsc.updater.dyndns2	

Index

 _
 | C
 | D
 | H
 | I
 | M
 | N
 | P
 | S

_

 	
 	__init__() (dyndnsc.detector.command.IPDetector_Command method)

 	(dyndnsc.detector.dnswanip.IPDetector_DnsWanIp method)

 	(dyndnsc.detector.iface.IPDetector_Iface method)

 	(dyndnsc.detector.socket_ip.IPDetector_Socket method)

 	(dyndnsc.detector.teredo.IPDetector_Teredo method)

 	(dyndnsc.detector.webcheck.IPDetectorWebCheck method)

C

 	
 	check() (dyndnsc.DynDnsClient method)

D

 	
 	
 dyndnsc

 	module

 	
 dyndnsc.detector.command

 	module

 	
 dyndnsc.detector.dnswanip

 	module

 	
 dyndnsc.detector.iface

 	module

 	
 dyndnsc.detector.socket_ip

 	module

 	
 	
 dyndnsc.detector.teredo

 	module

 	
 dyndnsc.detector.webcheck

 	module

 	
 dyndnsc.updater.afraid

 	module

 	
 dyndnsc.updater.duckdns

 	module

 	
 dyndnsc.updater.dyndns2

 	module

 	DynDnsClient (class in dyndnsc)

H

 	
 	has_state_changed() (dyndnsc.DynDnsClient method)

I

 	
 	IPDetector_Command (class in dyndnsc.detector.command)

 	IPDetector_DnsWanIp (class in dyndnsc.detector.dnswanip)

 	IPDetector_Iface (class in dyndnsc.detector.iface)

 	
 	IPDetector_Socket (class in dyndnsc.detector.socket_ip)

 	IPDetector_Teredo (class in dyndnsc.detector.teredo)

 	IPDetectorWebCheck (class in dyndnsc.detector.webcheck)

M

 	
 	
 module

 	dyndnsc

 	dyndnsc.detector.command

 	dyndnsc.detector.dnswanip

 	dyndnsc.detector.iface

 	dyndnsc.detector.socket_ip

 	dyndnsc.detector.teredo

 	dyndnsc.detector.webcheck

 	dyndnsc.updater.afraid

 	dyndnsc.updater.duckdns

 	dyndnsc.updater.dyndns2

N

 	
 	needs_check() (dyndnsc.DynDnsClient method)

 	
 	needs_sync() (dyndnsc.DynDnsClient method)

P

 	
 	
 Python Enhancement Proposals

 	PEP 20

S

 	
 	sync() (dyndnsc.DynDnsClient method)

dyndnsc command line interface

Synopsis

dyndnsc [options] [params …]

Description

dyndnsc is the command line interface to sync dynamic dns entries.

dyndnsc --help will give a list of available options.

See also

dyndnsc(1)

 nav.xhtml

 Table of Contents

 		
 Welcome to Dyndnsc’s documentation!

 		
 Introduction

 		
 What is Dyndnsc?

 		
 Goals

 		
 Installation

 		
 Pip / pipsi

 		
 Docker

 		
 Get the Code

 		
 Quickstart

 		
 Command line usage

 		
 Update protocols

 		
 Detecting the IP

 		
 Presets

 		
 Configuration file

 		
 Custom services

 		
 Plugins

 		
 Frequently Asked Questions

 		
 Python 3 Support?

 		
 Is service xyz supported?

 		
 I get a wrong IPv6 address, why?

 		
 What about error handling of network issues?

 		
 Community Updates

 		
 Tracking development

 		
 Release history

 		
 0.6.x (unreleased)

 		
 0.6.1 (April 2nd 2021)

 		
 0.6.0 (February 21st 2021)

 		
 0.5.1 (July 7th 2019)

 		
 0.5.0 (June 25th 2019)

 		
 0.4.4 (December 27th 2017)

 		
 0.4.3 (June 26th 2017)

 		
 0.4.2 (March 8th 2015)

 		
 0.4.1 (February 16th 2015)

 		
 0.4.0 (February 15th 2015)

 		
 0.3.4 (January 3rd 2014)

 		
 0.3.3 (December 2nd 2013)

 		
 0.3.2 (November 16th 2013)

 		
 0.3.1 (November 2013)

 		
 0.3 (October 2013)

 		
 0.2.1 (February 2013)

 		
 0.2.0 (February 2010)

 		
 0.1.2 (July 2009)

 		
 0.1.1 (September 2008)

 		
 License

 		
 API Documentation

 		
 Main Interface

 		
 IP Updaters

 		
 Afraid

 		
 Duckdns

 		
 Dyndns2

 		
 IP Detectors

 		
 Command

 		
 DNS WAN IP

 		
 Interface

 		
 Socket

 		
 Teredo

 		
 Web check

 		
 Contributing

 		
 Basic method to contribute a change

 		
 Idioms to keep in mind

_static/plus.png

_static/file.png

_static/minus.png

